Valuing Freshwater Flow in The Apalachicola River Basin

Christopher S. Burkart
William L. Huth
University of West Florida

Sources of Value?

- Multiple sources
 - Market-based/direct
 - Non-market based/indirect
- Generation of value can depend on flow
- What flow regime maximizes value?
- Implications for entire ACF basin

Two sources of Value (for now)

- "Low-hanging data"
 - Hydroelectric power
 - Oyster harvest
- What value does flow generate?

Woodruff Hydroelectric Generation

Hydroelectric Value

	Annual	Power Revenue	Implied electricity price
Year	Generation (mWh)	(2008 dollars)	(2008 dollars per mWh)
2003	235,316	\$5,355,522	\$19.45
2004	242,613	\$5,593,169	\$20.23
2005	240,879	\$7,515,944	\$28.31
2006	195,458	\$7,799,930	\$37.37
2007	171,470	\$7,227,221	\$40.60
2008	190,911	\$7,806,000	\$40.89

Woodruff Hydroelectric Generation

Oyster Value

- Why oysters?
 - Highest-valued fishery output
 - Abundant existing data
 - Current food safety policy implications

Apalachicola Bay Oyster Harvest

Real Price of Apalachicola Bay Oysters

Real Value of Apalachicola Bay Oyster Harvest

Harvest Value and Flow

- High flow drives low salinity
- High salinity and harvest quantity/quality
 - Peak growth at ~25ppt? (Wang, et al. 2008)
 - V. vulnificus inhibited at ~28ppt (Motes, et al. 1998)

Filtered Harvest and Salinity Time Series

Salinity-Harvest Relation

- No evidence of quadratic response
- Simple linear relation:

Coefficient	Estimate	t-value	<i>Pr</i> [> t]
Intercept	20.2695	7.412	<.001
Salinity	5.7792	20.226	<.001

 $R^2 = .799$

Dam Discharge and Apalachicola Bay Salinity

Tie Salinity to Dam Discharge

Crude model:

- Discharge and salinity data from ACE/NMFS
- Simple MA filter and lagged discharge
- Log-linear: salinity = α (discharge) β + ϵ

Coefficient	Estimate	t-value	<i>Pr</i> [> t]
<i>ln</i> (a)	14.49549	100.12	<.001
β	-1.305102	–86.82	<.001

 $R^2 = .646$

Combining Value Sources

Optimal Flow Management

- Depends on price paths of
 - Oyster harvest
 - Electricity
- Marked increases in salinity
 - Price premium under proposed FDA rules?
 - Even if feasible, hydropower must be reduced
- Several other important tradeoffs missing

Future Goals

- Improve econometric/biophysical modeling
- Incorporate other sources of value
- Sensitivity to data source (oysters, salinity)
- Micro-scale time model:
 - Pathogen risk in summer
 - Value of salinity higher