Wind Turbines and Coastal Recreation Demand

Craig E. Landry, Tom Allen, Todd Cherry, and John Whitehead Appalachian Energy Center ECU Center for Sustainable Tourism

Electric Power Generation

- Increasing price levels and volatility
- Climate Change & National Security
- Wind energy as an alternative
 - Large upfront costs, but low operation costs
 - Cost stability
 - No carbon residuals, but other environmental impacts

Impact on Visual Amenities

- Places with high wind energy potential (mountaintops and coastal waters) are also associated with scenic vistas
 - Local concerns
 - Recreation and tourism
 - Property values

Impact of Diminution of View Amenities on Coastal Recreation

- Beach visitation data collected for 16 northern CAMA counties in the OBX region (telephone)
- <u>Class 1</u>: *Coastal* Carteret, Hyde, Dare, Currituck
- <u>Class 2</u>: Adjacent Beaufort, Bertie, Camden, Chowan, Craven, Gates, Hertford, Pamlico, Pasquotank, Perquimans, Tyrell, Washington

Data

• Telephone Survey

- Opinions on wind energy & climate change
- Recreation Demand Data:
 - Past beach trips (RP)
 - Planned future beach trips (SP)
 - Future beach trips w/ offshore wind turbines (SP)
- Estimate recreation demand model to measure lost consumer surplus
- Internet Survey
 - Beach site choice data (SP) with windmill visualizations

Telephone Data

- Incentive = \$20 Food Lion gift card
- 361 telephone responses: 31% resp. rate
- Possible evidence of selection bias
- Inverse probability weights to adjust for under-representation of young males and those lower income and education levels.
 Still a possibility of selection based on unobserved factors

Telephone Data

- What if wind turbines were present at the beach they planned to go to on their next visit?
 - 92% would visit the same beach
 4% would visit a different beach
 - 4% would not go to the beach

Recreation Demand Model
 Household production of beach trips using:

 Automobile (gasoline, wear-and-tear costs)
 Time (opportunity cost)

- Quasi-panel data:
 - 18.6 NC beach trips in the previous year
 - 19.9 NC beach trips planned for next year
 - 18.7 NC beach trips w/ wind farms
- Count data regression (Random effects Poisson) - # trips = non-negative integer # trips = f(tc, sub_tc, income, demographics, conditions)

Recreation Demand Model

Recreation Demand Results

Random-effects Poisson regression Group variable: sub_id Random effects ε i ~ Gamma					Number of obs = 787 Number of groups = 266 Wald chi2(10) = 48.59		
Log likelihood	d = -2196.4487				Prob > chi2 = 0.0000		
t_trips	Coef.	Std. Err.	Z	P> z	[95% Conf. Interval]		
ptr	0098842	.0018086	-5.47	0.000	01342910063394		
sub_ptr	.010197	.0020911	4.88	0.000	.0060986 .0142954		
male	.0543585	.1989064	0.27	0.785	335491 .444208		
age	0106571	.005352	-1.99	0.046	02114690001673		
hschool	0178951	.2962082	-0.06	0.952	5984525 .5626623		
some_coll	.2325259	.2796742	0.83	0.406	3156254 .7806772		
college2	.7638442	.3621505	2.11	0.035	.0540424 1.473646		
inc	0049906	.0033847	-1.47	0.140	0116245 .0016434		
future	.0451058	.0247075	1.83	0.068	00332 .0935315		
fut_wind	.0209284	.0248506	0.84	0.400	0277779 .0696348		
_cons	1.241217	.3744115	3.32	0.001	.5073837 1.97505		
Inalpha	.3858138	.0858056			.2176378 .5539897		
alpha	1.470811	1262038			1.243 137 1.740182		

Likelihood-ratio test of alpha=0: chibar2(01) = 1.7e+04 Prob>=chibar2 = 0.000

Recreation Demand Results

- $\varepsilon_{op} = -2.19$: price elastic
- $\varepsilon_{cp} = 4.22$: *responsive* to substitute price
- $\varepsilon_{inc} = -.395$: beach visitation is *inferior* good
- Consumer surplus:
 - Current: \$2120 per year
 - Projected: \$2218 per year
 - w/ turbines: \$2164 per year
- Annual loss = \$53 per year (~2%)

Trip Choices with Visualization

- Internet survey 118 respondents
 - Imagine you are deciding on a destination for your first OBX single-day beach trip of the year.
 - In what follows we have laid out a set of alternatives for this decision.
 - Each alternative is described by characteristics of the available beaches.
 - The characteristics have a number of levels.

Trip Choice with Visualization

- Characteristics and possible levels are:
 - <u>People on the Beach</u> # people per mile
 - <u>Distance from Home</u> one-way miles travelled
 - Parking Fees amount paid to park your car
 - <u>Ocean View</u> a clear view of the ocean; wind farm 1 mile out; wind farm 4 miles out
 - <u>Sound View</u> a clear view of the sound; wind farm 1 mile out; wind farm 4 miles out

Visualization of Beach Conditions

No wind turbines

Visualization of Beach ConditionsWind turbines 1 mile away

Visualization of Beach ConditionsWind turbines 4 miles away

Random Utility Model

- Assume individual chooses trip that yields the highest satisfaction, where satisfaction depends upon attributes of the trip and unobservable factors.
- Choice set: 3 trips options & no-trip
- Model probability of making selection over series of six choice sets.
- Mixed logit model parameters are estimated by Simulated Maximum Likelihood

Example: Choice Set

No Trip	Trip A	Trip B	Trip C		
(stay home)	People on the Beach: 40 - 200	People on the Beach: more than 200	People on the Beach: less than 40		
,	Distance from home: 120 miles	Distance from home: 90 miles	Distance from home: 60 miles		
	Parking Fee: \$0	Parking Fee: \$4	Parking Fee: \$8		
	Ocean View: 1-mile wind farms	Ocean View: 4-mile wind farms	Ocean View: no wind farms		
	Sound View: 4-mile wind farms	Sound View: no wind farms	Sound View: 1-mile wind farms		

Choice Experiment Results

• Mixed logit model

Log likelihood = -760.2396

 \bullet

•

Number of obs = 2768Wald chi2(10) = 325.64Prob > chi2 = 0.0000

у	Coef. Robust Std. Err. z P> z			[95% Conf. Interval]		
Mean						
no_trip	-2.008872	.941546	-2.13	0.033	-3.854268	1634753
alt_A	.5314615	.2431104	2.19	0.029	.0549739	1.007949
alt_B	.8878032	.2845311	3.12	0.002	.3301324	1.445474
tc	0115428	.0042834	-2.69	0.007	0199381	0031476
congestion	.0006707	.0015837	0.42	0.672	0024332	.0037747
park_fee	0932135	.0304854	-3.06	0.002	1529638	0334633
oceanw1	7144252	.2685468	-2.66	800.0	-1.240767	1880831
oceanw4	.4506703	.6296497	0.72	0.474	7834204	1.684761
soundw1	.0352767	.3891418	0.09	0.928	7274273	.7979807
soundw4	.4263244	.4071793	1.05	0.295	3717324	1.224381

Choice Experiment Results

•		Coef.	Robust Std.	bust Std. Err. z		[95% Conf.	if. Interval]	
•	SD							
	congestion	.000040	03 .0000709	0.57	0.570	0000987	.0001792	
•	park_fee	001912	.0057844	-0.33	0.741	0132495	.0094251	
•	oceanw1	428426	64 .3975198	8 -1.08	0.281	-1.207551	.350698	
•	oceanw4	1.49466	67 .709885	2.11	0.035	.1033183	2.886016	
•	soundw1	.239111	18 .6717933	0.36	0.722	-1.077579	1.555802	
•	soundw4	041969	96 .3534912	2 -0.12	0.905	7347996	.6508603	

Choice Experiment Results

- Compensating Variation required compensation to hold utility constant
 - CV_{congestion} = \$0.05*, one additional person (not statistically significant)
 - $-CV_{parking_{fee}} =$ \$8, \$1 increase in parking fee
 - $-CV_{ocean1} =$ \$62, avoid wind farms 1 mile offshore
 - Other wind effects not statistically significant

Conclusions

- Estimates of contingent behavior in presence of wind energy projects in the coastal zone
 - How would annual demand change with widespread wind farms?
 - How do wind energy projects affect site choice?
- Focus on coastal residents (nothern CAMA counties)

Conclusions

- <u>Aggregate recreation demand</u> annual loss of about \$53 in consumer surplus (about 2%)
- <u>Site choice model</u>:

choice

- Parking fees decrease utility & site choice probabilities
- Offshore wind farms (1 mile) drive visitors away (lower probability)
 - WTP \$62 per trip to avoid offshore wind farms
- Other wind farms have no impact on site

Thanks!

• Research supported by:

- Appalachian Energy Center
- ECU Center for Sustainable Tourism
 - Visualization support provided by NC Renaissance Computing Initiative (RENCI)
- Questions/Comments?