Science, Service, Stewardship

Technical Efficiency & Capacity Reduction A case study of vessel buyouts in California

Aaron Mamula Jan Mason Trevor Collier NOAA Fisheries NOAA Fisheries University of Dayton NOAA FISHERIES SERVICE

Determine how policy instruments impact decisions of *individual* fishers

- how does policy impact efficiency of the individual?

- □ 3rd largest commercial fishery (by value) in California
- □ 12% of statewide commercial fishing revenues
- □ Managed to provide year round landings through:
 - o Trip Limits (Catch limits)
 - o Gear Restrictions
 - o Area Closures (RCAs)

<u>Goal</u>: to assess the efficiency implications of the groundfish trawl buyback at the vessel level.

Motivation:

Efficiency & Capacity Utilization have been estimated for almost all major fisheries in the U.S. (*National Assessment of Excess Harvesting Capacity in Federally Managed Commercial Fisheries*)...examining how technical efficiency changes as the individual's choice set changes seems a less popular pursuit.

Notable Exceptions:

Fisheries

- □ Felthoven, 2002
- Descoe, Andersen & de Wilde, 2004

Econ

□ Millimet and Collier, 2008

- □ How might a vessel buyout impact efficiency?
 - o Crowding effects (+)
 - o Competition effects (+, -)
 - o Stock effects (+)

NOAA FISHERIES SERVICE

Buyback Basics

- Fishery declared a federal disaster in 2000
- Pacific Groundfish Limited Entry Trawl Buyback Program instituted in 2003
- 91 limited entry groundfish trawl vessels retired coastwide
- 43 from California
- Bids scored according to landings
- □ Mostly industry funded
 - Feds put up initial \$43 million
 - \$36 million to be paid back

- Tow-level logbook data provided by PacFIN
 - o California only
 - o Limited entry vessels only
 - o Data on: tow location, depth, lbs, value, self-reported target
- Vessel characteristics data provided by NMFS NWR
 - o Vessel length, weight and horsepower
- Buyback Info taken from Federal Registrar
 - o Sellers versus non-sellers

□ Schmidt & Sickles (1984) model w/time invariant efficiency:

$$y_{it} = \alpha + x_{it}\beta - u_i + \varepsilon_{it}$$

□ Alternative:

o Green (2004): time variant efficiency

Although Green's model allows time variant inefficiency, it requires inefficiency to be independent across cross-sectional units...ignoring competition effects.

Multi-species Fishery:

- o Use a subsample of data:
 - DTS vessels only (annual DTS revenue > 60% of total vessel revenue)

DTS is the largest segment of the fishery

- o by volume (roughly 60% of total landings)
- o by effort (70% of total effort)

DTS landings make up 85% of total landings on DTS tows

Trip Limits:

 $\Box \quad \text{Define dependent variable as DTS catch-limit fulfillment} \quad y_{it} = \frac{lbs_{it}}{L}$

NOAA FISHERIES SERVICE

Data Summary

Two sample KS test for equality of distribution functions

HORSEPOWER

D	p
0.184	0.317
-0.111	0.658
0.18	0.615
	-0.111

VESSEL LENGTH

aller Group	D	р	
lers	0.166	0.390	
ellers	-0.045	0.933	
mb	0.166	0.734	
lers ellers	-0.045	0.39 0.93	

NOAA FISHERIES SERVICE

Variable Inputs

р

Two sample KS test for equality of distribution functions

Sellers	0.131	0.533
~Sellers	-0.068	0.842
Comb	0.131	0.912

Tow Hours

Smaller Group	D	р
Sellers	0.131	0.533
~Sellers	-0.125	0.564
Comb	0.131	0.912

Estimation

$$\ln y_{it} = \alpha + \ln x_{it}\beta + M\gamma + P\phi + T\omega - u_i + \varepsilon_i$$

Where:

X = (days at sea, tow hours)

_P = dummy variables indicating primary port

_M = month group dummy variables

_T = yearly dummy variables

				R-sq		
Model	N	Groups	<i>F-test: Joint significance of vessel- level fixed effects (p-value)</i>	Within	Between	Overall
Pre-buyback	573	70	2.27 (0.000)	0.524	0.452	0.421
Post-buyback	191	29	3.378 (0.000)	0.596	0.460	0.541

- Mean efficiency increases from69% to 76%
- Mass of efficiency distribution shifts
- □ Efficiency distribution *among non-sellers* shifts
- □ KS-test confirms difference in efficiency among non-sellers significant w/ p = 0.051

- Did capacity reduction have a measurable impact on output efficiency of the fleet?
 - o our results suggest this was the case...however,
 - o confounding management actions make it difficult to establish causality
- Can we determine whether vessel reduction had implications for efficiency at the vessel level?
 - o again our results suggest yes...however,
 - o time invariant specification for efficiency makes it difficult to prove this:
 - If the hyper efficient vessel actually became less efficient the rest of the fleet could be no more efficient yet appear to be.

Apply Collier, Johnson & Ruggiero (2009) to deal with multi-species issue.